
© 2023 JETIR July 2023, Volume 10, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR2307779 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org h675

Comparative Approach for Face Detection in

Python, OpenCV and Hardware

Varsha K. Patil

Dept Electronics and Telecommunications - AISSMS IOIT, Pune, India

Ganesh Suresh Birajdar

Dept Electronics and Telecommunications - AISSMS IOIT, Pune, India

Shreyas Manoj Chaudhari

Dept Electronics and Telecommunications - AISSMS IOIT, Pune, India

Aditya Manoj Gandhamal

Dept Electronics and Telecommunications - AISSMS IOIT, Pune, India

 Abstract: This study contrasts several facial recognition techniques, focusing on Python, OpenCV, and hardware alternatives

like Arduino. It contrasts the advantages and disadvantages of each approach, highlighting Python-OpenCV's versatility and

Arduino's potential for real-time performance. The needs, resources, and constraints of the application guide the choice of

strategy. According to the paper, more research may help these systems' face recognition capabilities even further.On the other

hand, hardware-based face detection offers the potential for significant performance gains by leveraging dedicated processing

units specifically designed for image analysis tasks. Implementing face detection algorithms on hardware can lead to faster and

more efficient processing, particularly in scenarios where real-time performance is critical. Throughout this project report, we

will explore the similarities, differences, advantages, and limitations of both the Python-OpenCV software-based approach and

the hardware-based approach. By undertaking this comparative study, we aim to provide a comprehensive understanding of

face detection techniques implemented in Python using OpenCV and those utilizing hardware components. The insights gained

from this research will enable us to make informed decisions regarding the choice of approach based on specific application

requirements, computational constraints, and performance expectations.

 I. INTRODUCTION

In recent years, face detection has emerged as a crucial and widely researched topic in computer vision and image processing. Face

detection algorithms that are precise and efficient are becoming increasingly important as the need for applications such as facial

recognition systems, surveillance systems, and human-computer interaction grows. Researchers and developers have explored various

approaches to tackle this challenging task, including software-based solutions implemented in Python using OpenCV and hardware-

based approaches utilizing dedicated processing units. The objective of this paper is to present a comparative approach for face detection,

focusing on the implementation using Python, OpenCV, and hardware. By examining these three distinct approaches, we aim to analyze

their strengths, weaknesses, and performance characteristics, ultimately enabling us to gain insights into the trade-offs associated with

each method. Python, a versatile and widely used programming language, along with OpenCV which is a free library for computer

vision, provides a flexible platform for developing face detection algorithms. This software-based approach utilizes image processing

techniques, such as Haar cascades, to detect facial features and localize faces within an image or video stream. The easy-to-understand

nature, extensive library support, and rapid prototyping capabilities, make Python an attractive choice for implementing facial detection

algorithms.

On the other hand, hardware-based face detection offers the potential for significant performance gains by leveraging dedicated

processing units specifically designed for image analysis tasks. Implementing face detection algorithms on hardware can lead to faster

and more efficient processing, particularly in scenarios where real-time performance is critical. Throughout this project report, we will

http://www.jetir.org/

© 2023 JETIR July 2023, Volume 10, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR2307779 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org h676

explore the similarities, differences, advantages, and limitations of both the Python-OpenCV software-based approach and the hardware-

based approach. By undertaking this comparative study, we aim to provide a comprehensive understanding of face detection techniques

implemented in Python using OpenCV and those utilizing hardware components. The insights gained from this research will enable us

to make informed decisions regarding the choice of approach based on specific application requirements, computational constraints, and

performance expectations.

 II.LITERATURE REVIEW

A comprehensive literature survey was conducted to comprehend the existing approaches and techniques related to facial detection. The

Viola-Jones face detection technique was introduced in this publication. which has been widely used in the field. The authors proposed

the use of Haar features and AdaBoost for effective and accurate facial detection tasks [1].

This survey paper presents an overview of various face detection methods, which include approaches based on template matching,

features, and appearances [2]. It talks about the benefits and shortcomings of each technique.

Zhang, Z., & Zhang, Z. (2010). A survey of recent advances in face detection. Technical Report MS-CIS-10-37, Department of Computer

and Information Science, University of Pennsylvania. This survey summarizes recent advancements in face detection algorithms,

including Viola-Jones, deformable part models, and deep learning-based approaches. It explores the challenges and trends in face

detection research.

This comprehensive handbook covers various aspects of face recognition, including face detection. It discusses classical and modern

techniques for facial detection tasks and provides insights into the underlying algorithms [3].

S. M. Sait, and M. A. Rahman. (2014). A Survey on Different Approaches of Face Detection Techniques. International Journal of

Computer Applications, 101(10), 7-11. This survey paper presents a description of various face detection techniques, which include

Viola-Jones algorithm, methods based on skin color, and approaches based on neural networks. It compares the strengths and limitations

of each technique [4].

This paper encompasses a comprehensive review of traditional methodologies in face recognition tasks, including techniques such as

Eigenfaces and Fisher faces. An excerpt regarding Local Binary Patterns (LBPs) has also been discussed. Moreover, it emphasizes the

significance of OpenCV as a robust computer vision library and its pivotal role in facilitating face detection techniques, notably the Haar

cascade classifier algorithm. The survey seeks to give a thorough overview of state of the art (SOTA) methods, recent advancements,

and practical applications in the realm of facial recognition utilizing OpenCV [5].

It includes a comprehensive review of various methodologies and techniques utilized in face detection and face recognition with the

application of OpenCV. The survey aims to investigate the advancements, challenges, and real-world applications in this domain, along

with a critical evaluation of the performance of different algorithms and approaches. By synthesizing and analysing the available

literature, this research paper contributes to the understanding and enhancement of face detection and face recognition techniques

employing OpenCV [6].

This study involves a comprehensive review of a number of methodologies, algorithms, and techniques employed in real-time facial

detection tasks and tracking systems. The survey explores the advancements, challenges, and practical applications in this domain, as

well as the performance evaluation of different algorithms and approaches. By analysing the available literature, the purpose of this

research study is to advance the knowledge of live face tracking and detection methods utilising OpenCV. [7].

This study encompasses a comprehensive review of different methodologies, algorithms, and the techniques employed in facial detection

and recognition tasks. It aims to investigate the advancements, challenges, and practical applications in this domain, as well as the

performance evaluation of different algorithms and approaches. By analysing the available literature, this research paper contributes to

the understanding and improvement of facial detection and facial recognition techniques using the combination of Python along with

OpenCV [8].

This paper provides a thorough and insightful study on facial identification methods [9]. In order to locate and separate the face region

from the backdrop, detecting faces is a crucial initiation in facial recognition systems. There have been numerous approaches proposed,

algorithms ranging from simple edge-based to complex high-level techniques applying effective pattern recognition methodologies. The

methodologies examined are divided into feature based and image-based categories, also examining the technical methodology and

efficacy.

This paper [10] discusses how to create real-time facial detection and facial tracking system leveraging hardware devices such as a web

camera as an input and an Arduino microcontroller as an output.

This paper shows the working Viola Jones algorithm for real-time facial tracking [11]. The main objective of the project is finding faces

in every frame recorded by a web camera. To accomplish this, the web camera's acquired image is processed using Viola Jones method

in MATLAB. This method finds faces and sends signals to an Arduino board, which in turn controls two servo motors which help move

the camera.

http://www.jetir.org/

© 2023 JETIR July 2023, Volume 10, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR2307779 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org h677

This research investigates the feasibility in constructing a facial recognition system using Raspberry Pi, utilising traditional facial

detection and identification techniques such as Haar cascades and PCA [12]. This article intends to advance face recognition to the point

where it can replace traditional methods which use passwords, RF I-Cards, etc. for accessing high-security systems. We intend to make

the system cost economical, simple to operate, and high performing by using the Raspberry Pi kit.

This paper describes a new facial detection-based security surveillance system [13]. For face detection, this system employs the Haar-

rectangle to select relevant parametric using AdaBoost method.

 III.METHODOLOGY

1. Using Python-

Data Collection: A dataset of images containing faces was collected from various sources, including public databases and online image

repositories. The images have a range of backdrops, lighting, positions, expressions, and lighting situations.

Data Preprocessing: The collected dataset was pre-processed to ensure the quality and consistency of the images. Preprocessing steps

which include resizing of images, normalizing the pixel values, and applying noise reduction techniques.

Face Detection Algorithm: The algorithm utilized is based on the Viola-Jones method. The algorithm involves training a classifier using

Haar-like features and AdaBoost, a machine learning technique. The trained classifier then detects faces in unseen data.

Implementation using Python: The facial detection system was implemented using the Python. OpenCV was used for processing images

and implementing the Viola-Jones algorithm.

http://www.jetir.org/

© 2023 JETIR July 2023, Volume 10, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR2307779 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org h678

2. Using OpenCV

A. OpenCV workflow

B. Using OpenCV for Real-Time Facial Detection

http://www.jetir.org/

© 2023 JETIR July 2023, Volume 10, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR2307779 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org h679

The Haar-cascade classifier algorithm, developed by Viola and

Jones, serves as the fundamental basis for face detection using

OpenCV. This algorithm leverages Haar-like features to detect

faces in an image. Haar-like features refer to rectangular

features that capture contrasts between neighbouring regions in

an image. These features can be efficiently computed using

integral images, which enable rapid calculation of pixel sums

within rectangular regions.

A machine learning approach known as the Haar cascade

classifier utilizes multiple low-level underperforming

classifiers to create a strong classifier. Through the training

phase, the algorithm determines the optimal values for features

and thresholds that distinguish between face and no-face

regions. The training is performed using a substantial dataset

consisting of positive examples (faces) and negative examples

(no-faces). During face detection, the Haar cascade classifier

slides across the image going through different scales and

positions. At each scale, the classifier evaluates the Haar-like

features within the sliding window. If these features meet

specific criteria, the region is identified as a potential face. To

enhance accuracy and minimize false positives, the face

detection algorithm employs a cascade structure.

This structure consists of multiple stages, each containing

several weak classifiers. During each stage, a region is

subjected to a set of requirements based on the weak classifiers.

If the region fails to meet these requirements, it is swiftly

rejected. The cascade structure ensures that only potential face

regions successfully pass through all stages, resulting in a more

precise detection.

For face detection tasks, OpenCV provides pre-trained Haar

cascade classifiers that have undergone training on a

substantial dataset comprising of positive along with negative

samples. These classifiers are well-suited for diverse

applications as they are capable of real-time or near real-time

face identification in general, this process involves using

OpenCV for the integration of efficient algorithms, machine

learning techniques, and pre-trained models.

3. Using Hardware

Detecting faces using Arduino involves using a compatible

camera module and implementing a lightweight face-detection

algorithm on the Arduino platform. The camera module

captures images, which are then pre-processed to enhance their

quality. A suitable face detection algorithm, such as the Haars

or the LBPs, is implemented and adapted to fit the

computational capabilities and memory constraints of Arduino.

The algorithm analyses the pre-processed images, identifies

regions that potentially contain human faces, and localizes

bounding boxes around the detected faces. The results can be

displayed on an LCD display, serial monitor, or interfaced with

other devices for visualization.

http://www.jetir.org/

© 2023 JETIR July 2023, Volume 10, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR2307779 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org h680

Set up your Arduino: Connect your Arduino board to your

computer and ensure that you have the Arduino IDE installed.

Choose a compatible camera module: Select a camera module

that is compatible with Arduino. Popular choices include the

OV7670 or MT9D111 camera modules. Connect the camera

module to the appropriate pins on your Arduino board

following the module's documentation.

Install the necessary libraries: Depending on the camera

module you're using; you may need to install specific libraries

that provide Arduino support for that module. Consult the

module's documentation for instructions on library installation.

Capture images: Use the camera module and the provided

libraries to capture images. This typically involves initializing

the camera, setting up parameters like resolution and exposure,

and capturing frames.

Preprocess the images: Preprocess the captured images to

enhance their quality or reduce noise. Common preprocessing

steps include resizing the images, converting them to grayscale,

or applying image filters to enhance contrast or reduce noise.

These steps help improve the effectivity in face detection.

Implement a facial detection algorithm: Choose a suitable

lightweight facial detection algorithm that can be implemented

on Arduino. Options include Haar cascades or Local Binary

Patterns (LBP). Adapt the algorithm to fit the Arduino's

computational capabilities and memory constraints. Libraries

like OpenCV can provide pre-trained models or sample code

for implementing these algorithms.

Apply Face Detection and Implement Face Localization: Run

the facial detection algorithm on the pre-processed images. The

algorithm will filter the image and locate regions that

potentially contain human faces. Once faces are detected,

implement a mechanism to locate bounding boxes for the faces

that are detected. This involves extracting the coordinates of

the detected regions and drawing bounding boxes around them

on the captured images.

Display the results: Utilize appropriate output options available

on Arduino to display the captured images with the detected

faces. This can be done using an LCD display, serial monitor,

or by interfacing Arduino with other devices or platforms for

visualization.

Arduino's limited computational resources and memory

constraints make it challenging to implement complex face

detection algorithms. However, there are a few lightweight

algorithms that can be adapted for face detection on Arduino.

Here are some commonly used algorithms:

Haar cascades: Haar cascades are largely used for facial

detection tasks due to their simplicity and efficiency. The

algorithm analyzes image features at multiple scales using

rectangular Haar cascade like features and classifiers.

AdaBoost or a similar machine learning technique is used to

train the classifiers. The OpenCV library provides Haar

cascades specifically designed for face detection, which can be

utilized on Arduino with suitable modifications.

LBP: It is a texture-based approach that encodes local patterns

in an image. It works by comparing the intensity values of

pixels in a neighbourhood and constructing a binary pattern.

The LBP algorithm can be used for face detection by applying

a sliding window across an image and classifying regions based

on the distribution of LBP features. LBP is relatively

lightweight and can be implemented on Arduino.

Template Matching: Template matching compares a template

or a pattern of interest with image regions to find similar

patterns. In face detection, a face template is used, and the

algorithm searches for regions that closely match the template.

The correlation coefficient or sum of squared differences can

be used as similarity measures. Template matching can prove

less resource intensive and compatible for simple face

detection on Arduino.

Viola Jones algorithm: This algorithm is an extension of Haar

cascades approach and is based on AdaBoost and Haar-like

features. It combines multiple underperforming classifiers to

create an effective classifier capable of detecting faces. While

the original Viola-Jones algorithm is computationally

demanding, simplified versions or optimizations can be

implemented on Arduino.

http://www.jetir.org/

© 2023 JETIR July 2023, Volume 10, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR2307779 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org h681

IV.CONCLUSION

This comparative study explored the detection of faces using

Python, OpenCV, and hardware such as Arduino. Python, with

the aid of OpenCV, provides a powerful and flexible platform

for implementing face detection algorithms. OpenCV offers a

rich set of functions and libraries specifically curated for image

processing tasks, including face detection. On the other hand,

hardware platforms like Arduino pose certain limitations due

to their constrained computational power and memory.

Implementing face detection algorithms directly on Arduino

can be challenging, especially with complex algorithms like

Viola-Jones. However, Arduino can still be used for basic face

detection tasks by adapting lightweight algorithms or

simplifying the original algorithms to fit the platform's

limitations.

While Python and OpenCV provide more flexibility and

computational resources for implementing advanced face

detection techniques, Arduino's hardware-centric approach

offers advantages such as lower power consumption and real-

time processing capabilities in certain applications. It is

important to consider specific requirements of the application

when choosing between Python, OpenCV, and hardware

platforms like Arduino. For applications that demand real-time

performance or have resource constraints, Arduino with

simplified face detection algorithms can be a viable option. For

more advanced and computationally intensive tasks, Python

and OpenCV provide a more suitable environment.

In conclusion, both Python with OpenCV and hardware

platforms like Arduino have their strengths and limitations in

face detection applications. The choice depends on specifically

the requirements, computational resources, and the constraints

of the project at hand. Future research can explore further

optimizations and adaptations to enhance face detection

capabilities on both Python and Arduino platforms.

 V.

REFERENCES

1.Emami, S., & Suciu, V. P. (2012). Facial recognition using

OpenCV. Journal of Mobile, Embedded and Distributed

Systems, 4(1), 38-43[1].

2.Khan, M., Chakraborty, S., Astya, R., & Khepra, S. (2019,

October). Face detection and recognition using OpenCV.

In 2019 International Conference on Computing,

Communication, and Intelligent Systems (ICCCIS) (pp. 116-

119). IEEE [2].

3.Kalas, M. S. (2014). Real time face detection and tracking

using OpenCV. international journal of soft computing and

Artificial Intelligence, 2(1), 41-44[3].

4.Dhawle, T., Ukey, U., & Choudante, R. (2020). Face

detection and recognition using OpenCV and python. Int. Res.

J. Eng. Techno, 7(10)[4].

5.Viola, P., & Jones, M. (2001). Rapid object detection using a

boosted cascade of simple features. In Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR) (Vol. 1, pp. I-511). IEEE.

6.Yang, M. H., Kriegman, D. J., & Ahuja, N. (2002). Detecting

faces in images: A survey. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 24(1), 34-58.

7. Zhang, Z., & Zhang, Z. (2010). A survey of recent advances

in face detection. Technical Report MS-CIS-10-37,

Department of Computer and Information Science, University

of Pennsylvania. 4.Jain, A. K., & Li, S. Z. (2011). Handbook

of face recognition. Springer Science & Business Media.

8. S. M. Sait, and M. A. Rahman. (2014). A Survey on

Different Approaches of Face Detection Techniques.

International Journal of Computer Applications, 101(10), 7-11.

9. Hjelmås, Erik, and Boon Kee Low. "Face detection: A

survey." Computer vision and image understanding 83, no. 3

(2001): 236-274.

10. Ayi, Maneesh, Ajay Kamal Ganti, Maheswari Adimulam,

and Badiganti Karthik. "Interfacing of MATLAB with Arduino

for face detection and tracking algorithm using serial

communication." In 2017 International Conference on

Inventive Computing and Informatics (ICICI), pp. 944-948.

IEEE, 2017.

11. Pamulapati, Venkata Sasank, Yekula Sumith Rohan,

Vemula Sai Kiran, Saranu Sandeep, and MARAM

SRINIVASA Rao. "Real-time Face Tracking using MATLAB

and Arduino." Electronics And Communication Engineering,

Vasireddy Venkatadri Institute Of Technology (2018).

12. Gupta, Ishita, Varsha Patil, Chaitali Kadam, and Shreya

Dumbre. "Face detection and recognition using Raspberry Pi."

In 2016 IEEE international WIE conference on electrical and

computer engineering (WIECON-ECE), pp. 83-86. IEEE,

2016.

13. Jian, Zhang, and Song Wan-Juan. "Face detection for

security surveillance system." In 2010 5th International

Conference on Computer Science & Education, pp. 1735-1738.

IEEE, 2010.

http://www.jetir.org/

